Abstract

A numerical approach is proposed to examine the singularly perturbed time-dependent convection–diffusion equation in one space dimension on a rectangular domain. The solution of the considered problem exhibits a boundary layer on the right side of the domain. We semi-discretize the continuous problem by means of the Crank–Nicolson finite difference method in the temporal direction. The semi-discretization yields a set of ordinary differential equations and the resulting set of ordinary differential equations is discretized by using a midpoint upwind finite difference scheme on a non-uniform mesh of Shishkin type. The resulting finite difference method is shown to be almost second-order accurate in a coarse mesh and almost first-order accurate in a fine mesh in the spatial direction. The accuracy achieved in the temporal direction is almost second order. An extensive amount of analysis has been carried out in order to prove the uniform convergence of the method. Finally we have found that the resulting method is uniformly convergent with respect to the singular perturbation parameter, i.e. ϵ-uniform. Some numerical experiments have been carried out to validate the proposed theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.