Abstract

In adult humans, the orbits vary mostly in their orientation in relation to the frontal bone profile, while the orientation of the cranial base and face are associated with the anteroposterior dimensions of the parietal bone. Here we investigate the effect of parietal bone length on the orientation of the orbits, addressing craniofacial integration and head orientation. We applied shape analysis to a sample of computed tomography scans from 30 adult modern humans, capturing the outlines of the parietal and frontal bones, the orbits, and the lateral and midline cranial base, to investigate shape variation, covariation, and modularity. Results show that the orientation of the orbits varies in accordance with the anterior cranial base, and in association with changes in parietal bone longitudinal extension. Flatter, elongated parietal bones are associated with downwardly oriented orbits and cranial bases. Modularity analysis points to a significant integration among the orbits, anterior cranial base, and the frontal profile. While the orbits are morphologically integrated with the adjacent structures in terms of shape, the association with parietal bone size depends on the spatial relationship between the two blocks. Complementary changes in orbit and parietal bone might play a role in accommodating craniofacial variability and may contribute to maintain the functional axis of the head. To better understand how skull morphology and head posture relate, future studies should account for the spatial relationship between the head and the neck.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call