Abstract

Hyaenodonta is a diverse clade of carnivorous mammals that were part of terrestrial faunas in the Paleogene of Eurasia and North America, but the oldest record for the group is Afro-Arabian, making the record there vital for understanding the evolution of this wide-spread group. Previous studies show an ancient split between two major clades of hyaenodonts that converged in hypercarnivory: Hyainailourinae and Hyaenodontinae. These clades are each supported by cranial characters. Phylogenetic analyses of hyaenodonts also support the monophyly of Teratodontinae, an Afro-Arabian clade of mesocarnivorous to hypercarnivorous hyaenodonts. Unfortunately, the cranial anatomy of teratodontines is poorly known, and aligning the clade with other lineages has been difficult. Here, a new species of the phylogenetically controversial teratodontine Masrasector is described from Locality 41 (latest Priabonian, late Eocene) from the Fayum Depression, Egypt. The hypodigm includes the most complete remains of a Paleogene teratodontine, including largely complete crania, multiple dentaries, and isolated humeri. Standard and “tip-dating” Bayesian analyses of a character-taxon matrix that samples cranial, postcranial, and dental characters support a monophyletic Masrasector within Teratodontinae, which is consistently placed as a close sister group of Hyainailouridae. The cranial morphology of Masrasector provides new support for an expanded Hyainailouroidea (Teratodontinae + Hyainailouridae), particularly characters of the nuchal crest, palate, and basicranium. A discriminant function analysis was performed using measurements of the distal humerus from a diverse sample of extant carnivorans to infer the locomotor habits of Masrasector. Masrasector was assigned to the “terrestrial” locomotor category, a result consistent with the well-defined medial trochlear ridges, and moderately developed supinator crests of the specimens. Masrasector appears to have been a fast-moving terrestrial form with a diverse diet. These specimens considerably improve our understanding of Teratodontinae, an ancient member of the Afro-Arabian mammalian fauna, and our understanding of hyaenodont diversity before the dispersal of Carnivora to the continent near the end of the Paleogene.

Highlights

  • The modern African terrestrial carnivore fauna is primarily composed of species from Carnivora, but members of that order only appear in the Afro-Arabian fossil record during the latest Oligocene [1,2]

  • Within Chron C13r, Seiffert [34] argued that Locality 41 (L-41) was latest Priabonian in age based on the presence of a major unconformity above the fossil-bearing layer that might have been due to nearshore erosion associated with the major drop in sea level that occurred in the earliest Oligocene

  • Masrasector nananubis is a new species from the late Eocene locality of L-41 (Priabonian, ~34 Ma) in Egypt

Read more

Summary

Introduction

The modern African terrestrial carnivore fauna is primarily composed of species from Carnivora, but members of that order only appear in the Afro-Arabian fossil record during the latest Oligocene [1,2]. Hyaenodonts were morphologically diverse, ranging from the small, weasel-sized Proviverra typica [3] to the wolf-sized Hyaenodon horridus [4], and even up to the rhinoceros-sized Megistotherium osteothlastes [5] Coupled with their extensive range in body size is a diversity of cranial, postcranial, and dental adaptations that allowed hyaenodonts to exploit arboreal, mesocarnivorous niches to cursorial, hypercarnivorous niches [6,7,8]. The Paleogene Afro-Arabian radiation of hyaenodonts is still not well understood One reason for this may be that the fossil record of this group is dominated by dental specimens; only five taxa (“Pterodon” africanus, Apterodon macrognathus, Megistotherium osteothlastes, and the recently published [9] Brychotherium ephalmos, and Akhnatenavus nefertiticyon) are known from substantial cranial material, and only a few postcranial elements have been described [5, 10,11]. The record from North America, in particular, has provided our baseline understanding of early hyaenodont cranial and postcranial morphology [4, 6, 13, 16, 19, 20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call