Abstract

Traditional Dipodomys (sub)species identification uses geography, phenotype, and external/skull measurements. Such measurements are correlated with size and thus redundant. I assessed the value of scaled cranial shape, based on two-dimensional landmarks (analyzed using geometric morphometric methods) in distinguishing Dipodomys taxa, and in summarizing their variation. My dataset includes 601 adult specimens from 20 species (49 operational taxonomic units - OTUs) across 190 localities. Cranial shape was highly useful in classifying Dipodomys taxa without considering geography. The auditory bulla was the most variable region-taxa differed in its hypertrophy, accompanied by different degrees of nearby structure crowding. Cranial shape was weakly allometric, with no significant sexual dimorphism. Weak size dimorphism was detected. (Sub)specific taxonomy is not reflective of shape variation, as the number of subspecies per species is not associated with disparity. Shape had significant phylogenetic signal, but subspecies did not always cluster with conspecifics and species did not always cluster according to phylogenetic relationship/taxonomy. Shape variation was correlated with climate, and species differed in morphological disparity and degree of specialization, which may contribute to divergence in shape variation patterns from phylogeny. D. deserti was the most specialized species, diverging greatly from the genus mean; D. heermanni was the least specialized. This study provides new insights into morphological variation of North American keystone species, several of conservation interest, for example, D. heermanni berkeleyensis, D. h. dixoni, D. nitratoides brevinasus, and D. n. nitratoides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call