Abstract

Cranberry (Vaccinium macrocarpon Ait.) cultivars are clonally propagated. Germination of cranberry seeds produces off-type varieties that are generally characterized by lower fruit productivity and higher vegetative vigor. Over time, the productivity of cranberry beds decreases as off-type frequency increases over time. Improved knowledge of cranberry germination biology would facilitate the use of targeted agronomic practices to reduce the emergence and growth of less productive off-types. The influences of light, temperature regime, pH, and water potential on cranberry seed germination were assessed in a growth chamber, whereas the effect of seeding depth on seedling emergence was evaluated in a greenhouse. Seeds stratified for 6 months at 3 °C were used for these experiments. Cranberry germination was influenced by light quality, with maximum germination reaching 95% after 15 minutes of exposure to red light but decreasing to 89% under far-red light. However, light was not required for inducing germination. Cranberry seeds germinated over a range of alternating diurnal/nocturnal temperatures between 5 and 30 °C, with an average maximum germination of 97% occurring for diurnal temperatures of 20 to 25 °C. The length of emerged seedlings was reduced by an average of 75% for pH 6 to 8 compared with pH 3 to 5. Seedlings that emerged at pH greater than 5 showed increasing chlorotic and necrotic injuries and were not considered viable at pH 7 or 8. Germination at 15 °C was reduced when seeds were subjected to water stress as low as −0.2 MPa, and no germination occurred below −0.4 MPa. Seeds incubated at 25 °C were more tolerant to water stress, with at least 70% maximum germination for osmotic potential (ψS) −0.6 MPa or greater. The average seedling emergence was 91% for seeds left on the soil surface or buried at a maximum depth of 1 cm; however, it was null at a burying depth of 4 cm. These results indicate that germination of cranberry seeds in cultivated beds in the northeastern United States likely occurs during the summer months, when temperatures are optimal and the moisture requirement is supported by irrigation. However, timely application of residual herbicide or sanding (a traditional cranberry agronomic practice) of open areas in cranberry beds could help prevent seed germination and reduce minimizing the onset of off-type varieties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call