Abstract
Statistical measures of complexity hold significant potential for applications in D-dimensional finite fermion systems, spanning from the quantification of the internal disorder of atoms and molecules to the information–theoretical analysis of chemical reactions. This potential will be shown in hydrogenic systems by means of the monotone complexity measures of Cramér–Rao, Fisher–Shannon and LMC(Lopez-Ruiz, Mancini, Calbet)–Rényi types. These quantities are shown to be analytically determined from first principles, i.e., explicitly in terms of the space dimensionality D, the nuclear charge and the hyperquantum numbers, which characterize the system’ states. Then, they are applied to several relevant classes of particular states with emphasis on the quasi-spherical and the highly excited Rydberg states, obtaining compact and physically transparent expressions. This is possible because of the use of powerful techniques of approximation theory and orthogonal polynomials, asymptotics and generalized hypergeometric functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.