Abstract

A Cram\'er-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides theoretical justification when the limiting tail probability can be used to estimate the tail probability under study. Chen Fang and Shao (2013) obtained a general Cram\'er-type moderate result using Stein's method when the limiting was a normal distribution. In this paper, Cram\'er-type moderate deviation theorems are established for nonnormal approximation under a general Stein identity, which is satisfied via the exchangeable pair approach and Stein's coupling. In particular, a Cram\'er-type moderate deviation theorem is obtained for the general Curie--Weiss model and the imitative monomer-dimer mean-field model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.