Abstract

In multistatic passive radar systems, the Cramer–Rao lower bound (CRLB) can be used to select the optimal illuminator of opportunity so that it provides the best estimation accuracy for target parameters. In this Letter, the monostatic and bistatic modified Cramer–Rao lower bound (MCRLB) for the Advanced Television Systems Committee (ATSC) signal, which is the pervasive digital television signal of opportunity for North American passive radar systems, is derived using the relationship between the ambiguity function of a signal and its CRLB. It is shown that the derived bistatic MCRLB for the range and velocity measurements can be used to select the optimal illuminator that exhibits the lowest bounds at each region. Examples are provided in the Columbus, OH area where the Ohio State University passive radar is located.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.