Abstract

Posterior Cramer-Rao bounds (CRBs) are derived for the estimation performance of three Gaussian process-based state-space models. The parametric CRB is derived for the case with a parametric state transition and a Gaussian process-based measurement model. We illustrate the theory with a target tracking example and derive both parametric and posterior filtering CRBs for this specific application. Finally, the theory is illustrated with a positioning problem, with experimental data from an office environment where the obtained estimation performance is compared to the derived CRBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.