Abstract

Accurate and robust characterization of metasurfaces and metamaterials in terms of effective parameters is critical to the design of novel metadevices. We compute the Cramér-Rao lower bounds on the variance of any estimator for both the electric and magnetic surface susceptibilities of metasurfaces. We show that retrieval of such effective properties is inherently difficult around resonances, most notably for low-loss metasurfaces. We also put forth a least-squares estimator to mitigate this difficulty for the normal components of susceptibility tensors, which are observed to be the most ill-behaved. The present work is relevant to the development of loss-compensated metasurfaces for which noise has to be closely considered for accurate and robust device characterization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.