Abstract

In many practical parameter estimation problems, such as coefficient estimation of polynomial regression, the true model is unknown and thus, a model selection step is performed prior to estimation. The data-based model selection step affects the subsequent estimation. In particular, the oracle Cramér-Rao bound (CRB), which is based on knowledge of the true model, is inappropriate for post-model-selection performance analysis and system design outside the asymptotic region. In this paper, we investigate post-model-selection parameter estimation of a vector with an unknown support set, where this support set represents the model. We analyze the estimation performance of coherent estimators that force unselected parameters to zero. We use the mean-squared-selected-error (MSSE) criterion and introduce the concept of selective unbiasedness in the sense of Lehmann unbiasedness. We derive a non-Bayesian Cramér-Rao-type bound on the MSSE and on the mean-squared-error (MSE) of any coherent estimator with a specific selective-bias function in the Lehmann sense. We implement the selective CRB for the special case of sparse vector estimation with an unknown support set. Finally, we demonstrate in simulations that the proposed selective CRB is an informative lower bound on the performance of the maximum selected likelihood estimator for a general linear model with the generalized information criterion and for sparse vector estimation with one step thresholding. It is shown that for these cases the selective CRB outperforms the oracle CRB and Sando-Mitra-Stoica CRB (SMS-CRB) [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.