Abstract

In this paper, we present the true Cramer-Rao lower bounds (CRLBs) for the estimation of phase offset for common quadrature amplitude modulation (QAM), PSK, and PAM signals in AWGN channels. It is shown that the same analysis also applies to the QAM, FSK, and PAM CRLBs for frequency offset estimation. The ratio of the modulated to the unmodulated CRLBs is derived for all QAM, PSK, and PAM signals and calculated for specific cases of interest. This is useful to determine the limiting performance of synchronization circuits for coherent receivers without the need to simulate particular algorithms. The hounds are compared to the existing true CRLBs for an unmodulated carrier wave (CW), BPSK, and QPSK. We investigated new and existing QAM phase estimation algorithms in order to verify the new phase CRLB. This showed that new minimum distance estimator performs close to the QAM bound and provides a large improvement over the power law estimator at moderate to high signal-to-noise ratios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.