Abstract

Let $T_n = n^{-1} \sum^n_{i=1} c_{in}X_{in}$ be a linear combination of order statistics and put $T^\ast_n = (T_n - E(T_n))/ \sqrt{\operatorname{Var}(T_n)}$. Sufficient conditions on the $c_{in}$ and on the moments of the underlying distribution are established under which the ratio $P(T^\ast_n > x)/(1 - \Phi(x))$ tends to 1, either uniformly in the range $-A \leq x \leq c \sqrt{\ln n}(A \geq 0, c > 0)$ (moderate deviation theorem) or uniformly in the range $-A \leq x \leq o(n^\alpha)(A \geq 0)$ (Cramer type large deviation theorem). The proof relies on Helmers' approximation method and on the corresponding results for U-statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.