Abstract

This paper focuses on the stochastic Cramer-Rao bound (CRB) of direction of arrival (DOA) estimates for binary phase-shift keying (BPSK) and quaternary phase-shift keying (QPSK) modulated signals corrupted by additive circular complex Gaussian noise. Explicit expressions of the CRB for the DOA parameter alone in the case of a single signal waveform are given. These CRBs are compared, on the one hand, with those obtained with different a priori knowledge and, on the other hand, with CRBs under the noncircular and circular complex Gaussian distribution and with different deterministic CRBs. It is shown in particular that the CRBs under the noncircular [respectively, circular] complex Gaussian distribution are tight upper bounds on the CRBs under the BPSK [respectively, QPSK] distribution at very low and very high signal-to-noise ratios (SNRs) only. Finally, these results and comparisons are extended to the case of two independent BPSK or QPSK distributed sources where an explicit expression of the CRB for the DOA parameters alone is given for large SNR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.