Abstract
In this note, a Cramer-Rao bound for the mean squared error that can be achieved with nonlinear observations of a nonlinear pth order autoregressive (AR) process where both the process and observation noise covariances can be state dependent is presented. The major limitation is that the AR process must be driven by an additive white Gaussian noise process that has a full-rank covariance. A numerical example demonstrating the tightness of the bound for a particular problem is included.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.