Abstract

Integrating semiconductor photocatalysts with outstanding visible light absorption and fast surface/interface charge transfer kinetics is still an enormous challenge for efficient CO2 photoreduction. In this work, the Au nanoparticles have been coupled with ultrathin BiOBr nanosheets, the formed heterostructure (Au/BiOBr) possesses a localized surface plasmon resonance (LSPR) and enhances the visible light absorption ability, as well as forms a fast charge transport channel on the interface between Au and BiOBr. Thus, the heterostructure photocatalyst exhibits higher photocatalytic CO2 to CO performance (135.3/16.43 μmol g−1) than that of BiOBr (89.0/6.46 μmol g−1) under 300 W Xe lamp and visible light (λ > 400 nm) irradiation for 5 h, respectively. Finally, the in situ FT-IR spectroscopy revealed CO2 photoreduction process and found that the ∗COOH is the key intermediate for CO2 to CO. This work provides an effective method to construct multielectron transfer scheme for efficient photocatalytic CO2 reduction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call