Abstract

Battery technology is increasingly seen as an integral element for future energy and transportation systems. Current developments in industry show an increasing number and size of battery producing factories, thus leading to an immense energy demand not only during the production of battery cells but also raw material extraction. Determining the embodied energy of battery cells allows a comparison with alternative energy systems and assessing the overall energy demand that can contribute to define measures for the improvement of its environmental footprint. The present work provides an analysis of the production of battery cells regarding their embodied energy. In order to quantify the embodied energy, a material and energy flow analysis (MEFA) was adapted towards battery production. The methodology focuses on the manufacturing processes and considers indirect and direct energy consumers, different machine states and existing yield losses along the value chain. The approach was applied to the battery manufacturing in the Battery LabFactory Braunschweig (BLB).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.