Abstract

A crack in an infinite plate of functionally graded materials (FGMs) under anti-plane shear impact loading is analyzed by making use of non-local theory. The shear modulus and mass density of FGMs are assumed to be of exponential form and the Poisson’s ratio is assumed to be constant. The mixed boundary value problem is reduced to a pair dual integral equations through the use of Laplace and Fourier integral transform method. In solving the dual integral equations, the crack surface displacement is expanded in a series using Jacobi’s polynomials and Schmidt’s method is used. The numerical results show that no stress singularity is present at the crack tip. The stress near the crack tip tends to increase with time at first and then decreases in amplitude and the peak values of stress decreases with increasing the graded parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.