Abstract

In this paper Digital Image Correlation (DIC) is used to characterize the crack-tip plastic zone size and shape under plane stress and plane strain situations. For that, two disk-shaped tension DC(T) specimens made of 1020 steel with thicknesses 2 and 30 mm were used in fatigue crack growth tests to simulated plane stress and plane strain conditions, respectively. Fatigue cracks were grown under quasi-constant ΔK (stress intensity factor range) and stress ratio (R) respectively equal to 20 MPa√m and 0.1. A single 100% overload was applied when the crack reached a crack length of 6 mm (i.e. total crack length/specimen width = 0.3). Experimental measurements of the monotonic plastic zone at different stages during overload application are compared with finite elements simulations to predict the size and shape of the crack-tip plastic zone. A detailed discussion is given based on the DIC measurements obtained from the current investigation, including the experimental observations of crack closure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call