Abstract

In Part I of this paper, the effects of constant depth erosion on the mode I stress intensity factor (SIF) were determined for a crack emanating from the erosion deepest point in a pressurized, autofrettaged, thick-walled cylinder. The erosion geometries investigated included semi-circular erosions and several arc erosions of various radii of curvature. Due to the trends found in that portion of the study, erosion depth and ellipticity are believed to have equally important impact on the SIFs. The present paper delves further into these two parameters using the following configurations: (a) semi-circular erosions of relative depths of 1–10 percent of the cylinder’s wall thickness, W; and (b) semi-elliptical erosions with ellipticities of d/h = 0.3 – 2.0. Deep cracks are found to be practically unaffected by the erosion, similar to the results presented in Part I of the paper. The effective SIF for relatively short cracks is found to be dramatically enhanced by the stress concentration factor (SCF), which encompasses the depth of the erosion as well as its radius of curvature at the tip. As a result of the increased effective SIF, a significant decrease in the vessel’s fatigue life of up to an order of magnitude may occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call