Abstract

Erosion geometry effects on the mode I stress intensity factor (SIF) for a crack emanating from the erosion’s deepest point in an autofrettaged, pressurized, thick-walled cylinder are investigated. The problem is solved via the FEM method and knowledge of the asymptotic behavior of short cracks. Autofrettage, based on von Mises yield criterion, is simulated by thermal loading and SIFs are determined by the nodal displacement method. SIFs are evaluated for a variety of relative crack lengths, a0/W = 0.01 – 0.45, emanating from the tip of erosions of different geometries. In Part I of this paper, two configurations are considered: (a) semi-circular erosions of relative depths of 5 percent of the cylinder’s wall thickness, W; and (b) arc erosions for several dimensionless radii of curvature, r′/W = 0.05 – 0.4. While deep cracks are almost unaffected by the erosion, the effective SIF for relatively short cracks is found to be significantly enhanced by the presence and geometry of the erosion and might reduce the vessel’s fatigue life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.