Abstract

In this Letter, we propose a crackless high-aspect-ratio processing method based on a temporally shaped ultrafast laser. The laser pulse is temporally split into two sub pulses: one with smaller energy is used to excite electrons but without ablation so that the applied pressure to the sample is weak, and the other one is used to heat the electrons and achieve material removal after it is temporally stretched by a chirped volume Bragg grating (CVBG). Compared with the conventional ultrafast laser processing, the crack generation is almost suppressed by using this proposed method. The hole depth increases more than 3.3 times, and the aspect ratio is improved at least 2.2 times. Moreover, processing dynamics and parameter dependence are further experimentally studied. It shows that the processing highly depends on the density of electrons excited by the first pulse (P1) and the energy of the second pulse (P2). This novel, to the best of our knowledge, method provides a new route for the precise processing of wide-bandgap materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call