Abstract

Ubiquitination is a versatile and dynamic post-translational modification in which single ubiquitin molecules or polyubiquitin chains are attached to target proteins, giving rise to mono- or poly-ubiquitination, respectively. The majority of research in the ubiquitin field focused on degradative polyubiquitination, whereas more recent studies uncovered the role of single ubiquitin modification in important physiological processes. Monoubiquitination can modulate the stability, subcellular localization, binding properties, and activity of the target proteins. Understanding the function of monoubiquitination in normal physiology and pathology has important therapeutic implications, as alterations in the monoubiquitin pathway are found in a broad range of genetic diseases. This review highlights a link between monoubiquitin signaling and the pathogenesis of genetic disorders.

Highlights

  • Ubiquitination is a reversible post-translational modification process during which the highly conserved 76-aminoacid protein ubiquitin is conjugated to target proteins

  • Monoubiquitination is the attachment of a single ubiquitin molecule to a single lysine residue on a substrate protein, whereas multi-monoubiquitination is the conjugation of a single ubiquitin molecule to multiple lysine residues

  • We focus on the role of monoubiquitin conjugation in normal physiology and genetic disease

Read more

Summary

Introduction

Ubiquitination is a reversible post-translational modification process during which the highly conserved 76-aminoacid protein ubiquitin is conjugated to target proteins. Ubiquitin can be conjugated to a protein substrate via distinct mechanisms. Monoubiquitination is the attachment of a single ubiquitin molecule to a single lysine residue on a substrate protein, whereas multi-monoubiquitination is the conjugation of a single ubiquitin molecule to multiple lysine residues. Polyubiquitination occurs when ubiquitin molecules are attached end-to-end to a lysine residue on a substrate protein to form a poly-ubiquitin chain. In this case, ubiquitin molecules are conjugated through one of the seven lysine residues present on the ubiquitin itself (K6, K11, K27, K29, K33, K48, and 63) or the N-terminal methionine (M1). We focus on the role of monoubiquitin conjugation in normal physiology and genetic disease

Monoubiquitination in Protein Function
Enzymes Controlling Monoubiquitination
X-linked Syndromic Mental Retardation
Parkinson’s Disease
Fanconi Anemia
Charcot-Marie-Tooth Disease
Cushing Disease
Noonan Syndrome
Autoimmune Disorder
Findings
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.