Abstract

Estrogen signaling pathways, because of their central role in regulating the growth and survival of breast tumor cells, have been identified as suitable and efficient targets for cancer therapies. Agents blocking estrogen activity are already widely used clinically, and many new molecules have entered clinical trials, but intrinsic or acquired resistance to treatment limits their efficacy. The basic molecular studies underlying estrogen signaling have defined the critical role of estrogen receptors (ER) in many aspects of breast tumorigenesis. However, important knowledge gaps remain about the role of posttranslational modifications (PTM) of ER in initiation and progression of breast carcinogenesis. Whereas major attention has been focused on the phosphorylation of ER, many other PTM (such as acetylation, ubiquitination, sumoylation, methylation, and palmitoylation) have been identified as events modifying ER expression and stability, subcellular localization, and sensitivity to hormonal response. This article will provide an overview of the current and emerging knowledge on ER PTM, with a particular focus on their deregulation in breast cancer. We also discuss their clinical relevance and the functional relationship between PTM. A thorough understanding of the complete picture of these modifications in ER carcinogenesis might not only open new avenues for identifying new markers for prognosis or prediction of response to endocrine therapy but also could promote the development of novel therapeutic strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.