Abstract

This paper presents a comprehensive study of the cracking and coalescence behavior of granite specimens with pre-existing flaw pairs. Uniaxial compressions tests were conducted on Barre granite with pre-existing flaw pairs of varying inclination angles $$(\upbeta )$$ , bridging angles $$(\alpha )$$ and ligament lengths (L). The cracking processes were recorded using a high speed camera to capture crack initiation and determine the mode (tensile or shear) of cracking. Visible fracture process zones of grain lightening, referred to as “white patching”, were also observed. White patching corresponded to fracture process zones that developed before visible cracks appeared. Cracks were typically preceded by a corresponding linear white patching. Diffusive area white patching was also observed near locations where surface spalling eventually occurred. Shear cracks occurred less often when compared to other brittle materials such as gypsum and marble and tensile cracks were typically much more jagged in shape (saw-toothed) due to the larger size and higher strength mineral grains of granite. Crack coalescence behavior trended from indirect to direct shear and combined shear-tensile to direct tensile coalescence as the flaw pair bridging angle $$(\alpha )$$ or flaw angle $$(\upbeta )$$ increased. As the ligament length (L) between flaws increased, more indirect coalescence was observed. As expected, due to the increased occurrence of tensile cracking in granite, more indirect tensile coalescence was observed in granite compared to other materials previously studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.