Abstract

In the present study, a physical model test was used to investigate the cracking characteristics of the surrounding rocks of hydraulic tunnels under high geothermal conditions. Based on similarity theory, a similar material was developed to simulate the intact and hard rocks in thermo-hydro-mechanical (THM) coupling fields; this material was used to cast a large-scale model tunnel. A new loading system, including a temperature loading system and a water pressure loading system, was designed to improve upon conventional laboratory hydraulic tunnel testing and provide a means of better understanding the fracture behavior of solid media. An acoustic emission (AE) monitoring system, thermocouples and osmometers were used to reveal the real-time evolution of the temperature field, seepage pressure field and crack propagation. The test results showed that compared to a hydraulic tunnel without high geotemperature, the critical internal water pressure of the hydraulic tunnel under high geothermal conditions decreased significantly. After the initiation of main cracks was induced by hydraulic fracturing, due to THM coupling, a certain number of secondary cracks initiated and developed between the main cracks. In this process, the trend of the secondary crack tip deviated from the radial direction, resulting in a more developed and complicated evolution of cracks (including main cracks and secondary cracks). This was different from the cracking behavior of surrounding rocks without a high geothermal gradient, in which only a few main cracks due to hydraulic fracturing were observed. An obvious multifield THM coupling effect was observed under high-geotemperature conditions, and cracks propagated and damage increased in the surrounding rocks in a discontinuous and step-like manner. The number and source locations of the cracks recorded by the AE monitoring system were in good agreement with the evolution of the temperature field and seepage pressure field. In addition, FLAC3D numerical simulations based on the thermo-hydro-mechanics and damage (THMD) model revealed that high geotemperatures and in situ stresses significantly influenced on the cracking mode of the surrounding rocks of hydraulic tunnels under high geotemperatures. The results obtained in this study provide a better understanding of the cracking characteristics of the surrounding rocks of hydraulic tunnels under high geothermal conditions and are useful for the design of hydraulic tunnels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call