Abstract

Based on our innovative application of using thick continuous casting slab 0.4C1.5Mn2Cr0.35Mo1.5Ni (high alloy) for the production of high-quality mould steel, the present study investigated the high cracking susceptibility of high-alloy steel and segregation in continuous casting slab. The thermal expansion and the continuous cooling transformation (CCT) curve measurement, together with a high temperature in situ observation, confirmed the martensite phase transition happening at approximately 583 K that would result in an increase in the hardenability and cracking susceptibility. The cracking susceptibility zone was determined by high-temperature mechanical properties measurement. The high-alloy mould steel has no II brittle zone, and III brittle zone is 973–1148 K. As a conclusion, the straightening temperature should be above 1148 K to avoid the cracking during the continuous casting. Moreover, the elemental segregation of carbon, sulfur, chromium, and molybdenum along the cracking was examined by electron probe microanalysis (EPMA) quantitative analysis that might be another reason for the steel crack formation. It shows that Martensite phase transition happened at approximately 583 K that would result in an increase in the hardenability and cracking susceptibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.