Abstract

Crack growth relationships are derived, for a steadily growing crack in a linear viscoelastic bulk material, based upon a model for which a small scale craze zone or cohesive zone is present at the crack tip. For steady conditions of crack growth the craze zone stress distribution is assumed to be non-uniform and velocity dependent. Using an energy balance fracture criterion, asymptotic forms for the crack growth law are derived which are valid as the crack speed tends to zero and to infinity (neglecting inertia and local heating effects), for a special class of viscoelastic materials. The exact result is given for generalised power law materials. Another important feature of the paper is the development of mathematical methods of solution when the only information known about the material in the craze zone is a non-linear elastic or plastic constitutive relation relating the craze stress to the craze deformation. The distributions of stress and deformation in the craze zone are found as part of the solution of the problem and it is shown how they depend on the speed of crack growth. These distributions are used, together with the energy balance fracture criterion, to determine the speed of crack growth in terms of the fixed applied stress intensity factor. Numerical methods of solution have been employed which are thought to be very accurate. The analysis and results presented apply also to the situation of brittle fracture in viscoelastic materials where cohesive zones exist at the crack tips in place of craze zones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call