Abstract
Cracks commonly appear in metal patterns when fabricated on native poly(dimethylsiloxane) (PDMS) substrate using general micro-electro-mechanical systems (MEMS) fabrication processes such as lift-off and metal etching. This paper introduces simple, reliable and reproducible fabrication methods to realize crack-free metal patterns on PDMS using intermediate-parylene-deposited PDMS substrate and parylene-filled PDMS substrate. The fabrication parameters of crack-free metal patterning were optimized resulting in reliable and reproducible fabrication outputs. The adhesion of metals on these surface-modified PDMS substrates was evaluated by ASTM tape tests in wet and dry conditions. X-ray photoelectron spectroscopy (XPS) was used to characterize the element composition on the surface of parylene-filled PDMS. The surfaces of native PDMS, parylene-deposited PDMS and parylene-filled PDMS were investigated using scanning electron microscopy (SEM) and XPS for analysis of crack generation during the metal patterning processes. The mechanical properties, such as stress and strain, of native and surface-modified PDMS substrates were measured by standard tension tests. Based on these results, it was concluded that the proposed methods successfully generated reliable crack-free metal patterns based on PDMS substrate using general MEMS technologies, which can be used for various applications such as biomedical devices and flexible electronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.