Abstract

Fracture behavior of binary blends comprising styrene-butadiene block copolymers having star and triblock architectures was studied by instrumented Charpy impact test. The toughness of the ductile blends was characterized by the dynamic crack resistance concept (R curves). While the lamellar thermoplastic star block copolymer shows elastic behavior (small scale yielding and unstable crack growth), adding 20 wt% of a triblock copolymer (thermoplastic elastomer, TPE) leads to a strong increase in crack toughness. The stable crack propagation behavior of these blends was described by the crack resistance curve (R) concept of elastic-plastic fracture mechanics. This concept allows the determination of fracture mechanics parameters as resistance against stable crack initiation and propagation. Two brittle to tough transitions (BTT) are observed in the binary block copolymer blend: BTT1 at 20% TPE and BTT2 at about 60% TPE. The strong increase of toughness at 60 wt% TPE indicates a ‘tough/high-impact’ transition as a measure for the protection against stable crack initiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call