Abstract

Non-180° domain switching leads to fracture toughness enhancement in ferroelastic materials. Using a high-energy synchrotron X-ray source and a two-dimensional detector in transmission geometry, non-180° domain switching and crystallographic lattice strains were measured in situ around a crack tip in a soft tetragonal lead zirconate titanate ceramic. At K I = 0.71 MPa m 1/2 and below the initiation toughness, the process zone size, spatial distribution of preferred domain orientations, and lattice strains near the crack tip are a strong function of direction within the plane of the compact tension specimen. Deviatoric stresses and strains calculated using a finite element model and projected to the same directions measured in diffraction correlate with the measured spatial distributions and directional dependencies. Some preferred orientations remain in the crack wake after the crack has propagated; within the crack wake, the tetragonal 0 0 1 axis has a preferred orientation both perpendicular to the crack face and toward the crack front.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.