Abstract

The present study proposes crack swarm inspection (CSI) for estimating crack location and size in carbon composite laminates from the surface voltage distribution. This technique generates a large number of virtual microscopic cracks, and calculates the surface voltage distribution of the composites using anisotropic electric potential functions and doublet strings. Using genetic algorithms, the virtual microscopic cracks formed a swarm to coincide with the measured surface voltage; thereby, the crack sizes and locations are estimated from the position of the crack swarm. The CSI was applied to crack detection in carbon laminated composite plates; it was confirmed that the existence of cracks in each partitioned section was detected with >80% probability, in reference to the crack location and size information. Furthermore, we also confirmed that the estimation accuracy was affected by the electric current density in the thickness direction, and addressed the recommended electrode interval based on the minimum size of the estimated crack.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call