Abstract

The effect of crack spacing on the brittle fracture characteristics of a semi-infinite functionally graded material (FGM) with periodic edge cracks is discussed. The incompatible eigenstrain induced in the material due to mismatch in the coefficients of thermal expansion is considered in the analysis. The nonhomogeneity of the material is simulated by an equivalent eigenstrain, whereby the problem is reduced to that of a cracked homogeneous material with incompatible and equivalent eigenstrains. A method is then formulated to calculate the stress intensity factor of periodic edge cracks in such a semi-infinite homogeneous medium and applied to calculate apparent fracture toughness of a semi-infinite FGM from its prescribed composition profile. Inverse calculation is also carried out to compute composition profile from prescribed apparent fracture toughness of the semi-infinite FGM. Numerical calculations are carried out for semi-infinite TiC/Al2O3 FGM and the results are shown in the figures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.