Abstract
Nondestructive testing techniques for the diagnosis of defects in solid materials can follow three steps, i.e., detection, location, and characterization. The solutions currently on the market allow for good detection and location of defects, but their characterization in terms of the exact determination of defect shape and dimensions is still an open question. This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using a suitable nondestructive instrument based on the eddy current principle and machine learning system postprocessing. After the design and tuning stages, a performance comparison between the two machine learning systems [artificial neural network (ANN) and support vector machine (SVM)] was carried out. An experimental validation carried out on a number of specimens with different known cracks confirmed the suitability of the proposed approach for defect characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Instrumentation and Measurement
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.