Abstract

We analyze the scaling of the crack roughness and of avalanche precursors in the two-dimensional random fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness exponents (zeta, zeta(loc) ) and the global width distributions are found to be universal with respect to the lattice geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff size. While the characteristic avalanche size scales as s(0) approximately L(D) , with a universal fractal dimension D , the distribution exponent tau differs slightly for triangular and diamond lattices and, in both cases, it is larger than the mean-field (fiber bundle) value tau=5/2 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.