Abstract

Cementitious materials exhibit shrinkage strain on drying, leading easily to crack formation when internally or externally restrained. It is known that cements with a slow strength gain show higher crack resistance under external drying. The ring shrinkage test can be considered an accelerated method for cracking tendency due to existing historical correlations between ring cracking time and long-term surface concrete cracking. The experimental campaign used ring shrinkage tests on 25 mortars, covering 10 commercial cements and 15 cements produced on demand, covering Portland cements and blended cements up to a 30% slag substitution. The results show that the restrained ring cracking time generally increases with lower Blaine fineness and higher slag substitution in 6 to over 207 days’ span. Upper limits for crack-resistant cements were proposed for 2-day compressive strength and Blaine fineness, in the case of Portland cements: 27.7 MPa and 290 m2/kg, respectively. A hygro-mechanical model successfully replicated strain evolution with crack formation and brittle failure. Only two out of ten commercial cements were classified as crack-resistant, while the ratio increased to 10 out of 15 cements which were produced on demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.