Abstract

Ceramic three-point bend specimens were pre-cracked in a displacement-controlled test in air at room temperature to form sharp cracks of different lengths. Critical stress intensity factors (K IC were then measured as a function of sharp crack length in a fast-fracture, load-controlled test. Crack resistance curves (K IC against crack length) were determined for three commercially pure aluminas of different grain size, a debased alumina containing a glassy phase, and a partially stabilized zirconia (PSZ) material. The crack resistance curves proved to be flat for the finer-grained and the debased alumina. A steeply rising crack resistance curve was, however, observed for a pure coarse-grained alumina material which is explained by friction effects of the cracked microstructure behind the measured crack front. The effect is influenced by the test procedure itself. Though crack branching takes place the crack resistance curve of PSZ is completely flat, which is attributed to fast fracture testing where only the most dangerous flaw is activated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.