Abstract

Fracture analysis of reinforced concrete deep beam strengthened with carbon fiber-reinforced polymer (CFRP) plates was carried out. The present research aimed to discover whether crack propagation in a strengthened deep beam follows linear elastic fracture mechanics (LEFM) theory or nonlinear fracture mechanics theory. To do so, a new energy release rate based on nonlinear fracture mechanics theory was formulated on the finite element method and the discrete cohesive zone model (DCZM) was developed in deep beams. To validate and compare with numerical models, three deep beams with rectangular cross-sections were tested. The code results based on nonlinear fracture mechanics models were compared with the experimental results and the ABAQUS results carried out based on LEFM. The predicted values of initial stiffness, yielding point and failure load, energy absorption, and compressive strain in the concrete obtained by the proposed model were very close to the experimental results. However, the ABAQUS software results displayed greater differences from the experimental results. For instance, the predicted failure load for the shear-strengthened deep beam using the proposed model only had a 6.3% difference from the experimental result. However, the predicted failure load using ABAQUS software based on LEFM indicated greater differences (25.1%) compared to the experimental result.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call