Abstract
Severe joint injuries often involve cartilage defects that propagate after mechanical loading. The propagation of these lesions may contribute to the development of post-traumatic osteoarthritis (PTOA). However, the mechanisms behind their propagation remain unknown. Currently, no numerical predictive methods exist for estimating crack propagation in cartilage under cyclic loading, yet they would provide essential insights into crack growth in injured tissue after trauma. Here, we present a numerical approach to estimate crack propagation in articular cartilage under cyclic loading using a cohesive damage model. Four different material models for cartilage (hyperelastic, poro-hyperelastic, poro-hyper-viscoelastic, and fibril-reinforced poro-hyperelastic (FRPHE) with different collagen orientations) were implemented. Our numerical cohesive damage model was able to replicate the experimental crack length reported in the literature, showing greater crack length with an increasing number of loading cycles. Damage initiation stress (4.35–4.73 MPa) and fracture energy (0.97–1.55 N/mm) values obtained for the poro-hyperelastic, poro-hyper-viscoelastic, and parallel-FRPHE models were within the range of what has been reported previously. The crack growth predictions obtained by the FRPHE models showed the influence of anisotropy of the fibrillar matrix on the cartilage response. Our results indicate that our cohesive damage model could potentially be used to estimate the adverse conditions in injured soft tissue such as osteochondral lesions, menisci tears, or partial ligament ruptures under (ab)normal biomechanical scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.