Abstract

The relationship between the stability of crack propagation in, and the fracture surface appearance of, DGEBA epoxy resins cured with TETA has been investigated using a linear elastic fracture mechanics approach. In particular, the effect of varying the amount of curing agent and curing conditions and altering external variables such as testing rate, temperature and environment have been studied. Under certain conditions, propagation is found to be stable and fracture surfaces have a smooth appearance. Under other conditions the cracks propagate in an unstable ″stick-slip″ manner. In this case, arrest lines can be seen on the fracture surfaces and their intensity and roughness increases with the magnitude of the crack jumps. The roughness of the fracture surfaces has been measured using a Talysurf and this has been shown to be due principally to deviation of the cracks from the original fracture plane rather than any gross plastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.