Abstract

Cracking has long been accepted as a major mode of premature failure in flexible pavements. Expected life of pavements, pavement condition and maintenance cost are directly related to pavement cracking. It is crucial to have a sufficient understanding of cracking mechanism in order to produce a sound and safe material and structural design of asphalt pavements. Simulation, surveying, observation, and measurement of cracking in pavement structures have been reported in literature in last three decades. However, cracking process in asphalt mixtures in a three dimensional scale is still a great challenge to road engineers. Using SIEMENS SOMATOM plus X-ray CT (computerized tomography) and multi-functional testing rig, a dynamic observation of cracking propagation of hot mix asphalt was conducted in this research. Marshall samples of AC20 were used under uniaxial compressive stress state. Stress and strain behavior was observed during the compressive failure process of asphalt mixtures. Cracking propagation in the samples can be clearly observed and failure mode and stress-strain behavior can then be simulated. Research results show that loading rate is a critical factor influencing cracking velocity and cracking density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call