Abstract

In this paper, the thermal fatigue damage phenomenon in the comprehensive temperature environment is studied by means of thermal fatigue damage mechanics and FEM technology, the thermal-stress analysis modal under the comprehensive thermodynamic boundary conditions is established, the regularities of distribution of temperature fields, thermal stress fields effected by the comprehensive coupled variables are investigated. According to the modify of material characteristics under the high-temperature alternating thermal impact conditions and the integrated influences of environment, mechanical parameter and material microstructure to the fatigue fracture, numerical modal of thermal fatigue crack initiation and propagation are developed, so the characteristics of thermal fatigue crack propagation are studied, which are verified by the experiments, it is very significant to study thermal damage question of working equipments in the similar conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.