Abstract

While cracks in isotropic homogeneous materials propagate straight, perpendicularly to the tensile axis, cracks in natural and synthetic composites deflect from a straight path, often increasing the toughness of the material. Here we combine experiments and simulations to identify materials properties that predict whether cracks propagate straight or kink on a macroscale larger than the composite microstructure. Those properties include the anisotropy of the fracture energy, which we vary several fold by increasing the volume fraction of orientationally ordered alumina (Al_{2}O_{3}) platelets inside a polymer matrix, and a microstructure-dependent process zone size that is found to modulate the additional stabilizing or destabilizing effect of the nonsingular stress acting parallel to the crack. Those properties predict the existence of an anisotropy threshold for crack kinking and explain the surprisingly strong dependence of this threshold on sample geometry and load distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call