Abstract

This paper investigates the roles of external loads and specimen geometry on crack path selection in adhesively bonded joints. First, the effect of mixed mode fracture on crack path selection is studied. Using epoxy as an adhesive and aluminum as the adherends, double cantilever beam (DCB) specimens with various T-stress levels are prepared and tested under mixed mode fracture loading. Post-failure analyses on the failure surfaces using X-ray photoelectron spectroscopy (XPS) suggest that the failure tends to be more interfacial as the mode II fracture component in the loading increases. This fracture mode dependence of the locus of failure demonstrates that the locus of failure is closely related to the direction of crack propagation in adhesive bonds. Through analyzing the crack trajectories in failed specimens, the effect of mixed mode fracture on the directional stability of cracks is also investigated. The results indicate that the direction of the crack propagation is mostly stabilized when more than 3% of mode II fracture component is present at the crack tip regardless of the T-stress levels in the specimens for the material system studied. Second, using a high-speed camera to monitor the fracture sequence in both quasi-static and low-speed impact tests, the effect of debond rate on the locus of failure and directional stability of cracks is investigated. Post-failure analyses including XPS, Auger electron spectroscopic depth profile, and scanning electron microscopy indicate that as the crack propagation rate increases, the failure tends to be more cohesive and the cracks tend to be directionally unstable. Last, as indicated by the finite element analyses results, the T-stresses, and therefore the directional stability of cracks in adhesive bonds, are closely related to the thickness of the adhesive layer and also the thickness of adherend. This specimen geometry dependence of crack path selection is studied analytically and is verified experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call