Abstract

A model of crack nucleation in a circular disk, based on consideration of cracking process zone is suggested. It is assumed that the cracking process zone is a finitelength layer containing a material with partially disturbed bonds between separate structural elements. Existence of bonds between the pre-fracture zone faces (the area of weakened interparticle bonds of the material) is simulated by application of cohesive forces caused by the existence of bonds to pre-fracture area surfaces. Analysis of limit equilibrium of the pre-fracture zone in a circular disk with mixed conditions on the boundary are fulfilled on the basis of ultimate stretching of material’s bonds and includes: 1) setting up the dependence of cohesive forces on opening of pre-fracture area faces, 2) estimation of stress state near the pre-fracture zone with regard to external loads and cohesive forces, 3) determination of dependence of critical external loads on geometrical parameters of the disk, under which the crack appears.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call