Abstract

Time reverse modeling (TRM) is successfully applied to localize acoustic emissions (AE) obtained from a physical experiment (double punch test) on a 118 × 120 × 160 mm concrete cuboid. Previously, feasibility studies using numerical (Ricker wavelet) and experimental (pencil-lead break) excitations are performed to demonstrate the applicability of TRM to real AE waveforms. Numerical simulations are performed assuming an uncracked and heterogeneous concrete model. The localization results from the numerical and experimental feasibility studies are compared and verified. The AE recorded during the double punch test are localized in a three-dimensional domain using TRM. The localization results are superposed with the three-dimensional threshold-segmented crack patterns obtained from X-ray computed tomography scans of the failed concrete cuboid. The presented TRM approach represents a reliable localization tool for signal-based AE analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.