Abstract

Gas turbine rotors made of Ni-base superalloys were sometimes found to have cracks at the dovetail of the first and second stage wheel. In order to maintain the reliability of gas turbine rotors over the long term, in addition to the application of countermeasures such as the shot-peening process, it is essential to confirm the characteristics of crack initiation mechanisms and to predict the possibility of new cracking. In this paper, first, the case study of crack initiation concerning a wheel dovetail crack has been carried out. Second, to reveal the characteristics of the crack, comparative evaluation between the actual crack and various mechanical fracture samples were conducted by using a scanning electron microscope (SEM) and the electron back-scatter diffraction (EBSD) method which can analyze crystallographic misorientation. As a result, it was found that even in relatively low temperatures, Inconel® Alloy 706 is subjected to brittle grain boundary oxidation when under constant high stress, i.e. a similar phenomenon to stress accelerated grain boundary oxidation (SAGBO), so called hold-time cracking (HTC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call