Abstract

Tests of iodine-induced stress corrosion cracking (ISCC) were carried out to elucidate the initiation and propagation of cracks in the claddings of zirconium alloys. Zircaloy-4 cladding and Nb-contained zirconium cladding were pressurized with and without a pre-cracked state at 350°C in an iodine environment. The results show that pitting nucleation and growth play an important role in initiating ISCC. Pits preferentially grow and agglomerate around the grain boundary, where the number of pits increases with the iodine concentration and the hoop stress of the claddings. A model of grain-boundary pitting coalescence and a model of pitting-assisted slip cleavage, which were proposed to clearly elucidate the crack initiation and propagation process under ISCC, produce reasonable results. The Nb-contained zirconium cladding exhibits higher ISCC resistance than Zircaloy-4 from the standpoint of a higher threshold stress-intensity factor and a lower crack propagation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call