Abstract

Stellite-6 powders were sprayed on Ni-Al bronze in order to produce coatings via high-velocity oxygen fuel (HVOF). The microstructural observations revealed the main mechanisms taking place for the substrate–coating adhesion. It was revealed that tungsten-rich particles are very active in improving the coating adhesion as well as the mechanical properties. The X-ray diffraction analysis of the coating material showed pronounced peak broadening, revealing high residual stresses related to excellent bonding to the substrate. As expected, the coating procedure led to an increase in surface hardness. The surface properties of the coatings were evaluated through cyclic three-point bending tests at different maximum loads. It was demonstrated that the main part of the fatigue life is spent in the crack initiation stage, with a short propagation stage. Obviously, this behavior decreases as the maximum cyclic stress increases. The micro-mechanisms taking place during cyclic loading were evaluated through fracture surface observations via scanning electron microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call