Abstract

Reducing unfavorable ice accretion on surfaces exposed in cold environment requires effective passive anti-icing/deicing techniques. Icephobic surfaces are widely applied on various infrastructures due to their low ice adhesion strength and flexibility, whereas their poor mechanical durability, common liquid infusion, weak resistance to contamination, and low bonding strength to substrates are the major remaining challenges. According to the fracture mechanics of ice layer, initiating cracks at the ice-solid interfaces via the proper design of internal structures of icephobic materials is a promising way to icephobicity. Herein, a crack initiating icephobic surface with porous PDMS sponges sandwiched between a protective, dense PDMS layer and a textured metal microstructure was proposed and fabricated. The combination of high- and low- stiffness PDMS layers anchored by the structured metal surface give the sandwich-like structure excellent icephobicity with both high durability and low ice adhesion (5.3 kPa in the icing-deicing cycles). The porosity and the elastic modulus of the PDMS sponges and the periodicity of the metal surface structures can both be tailored to realize enhanced icephobicity. The sandwich-like icephobic surface remained insignificantly changed under solid particle impacting and the durability characterized via linear abrasion tests was elevated compared with PDMS coating on flat metal surfaces. Additionally, the trilayer icephobic surface possesses durability, low ice adhesion strength, and improved resistance to contamination and is applicable on various surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call